Question			Answer	Marks	Guidance
1	(a)		(+)5	1	ALLOW 5+ OR V OR Cr ${ }^{\text {5+ }}$
1	(b)		For equations, IGNORE any state symbols; ALLOW multiples Any correct equation for a reaction catalysed by a transition element, compound or ion AND transition element, compound or ion (by formula or name) \checkmark	1	EXAMPLES $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$ (allow \rightarrow) AND Fe/iron oxide $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3}$ (allow \rightarrow) AND $\mathrm{V}_{2} \mathrm{O}_{5} / \mathrm{Pt}$ $2 \mathrm{CO}+2 \mathrm{NO} \rightarrow 2 \mathrm{CO}_{2}+\mathrm{N}_{2}$ AND Pt/Pd/Rh/Au Equation for any alkene $+\mathrm{H}_{2} \rightarrow$ alkane AND Ni/Pt/Pd $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{HCl}$ AND Fe/FeCl $/ \mathrm{Fe}^{3+}$ $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}+\mathrm{HBr}$ AND $\mathrm{Fe} / \mathrm{FeBr}_{3} / \mathrm{Fe}^{3+}$ $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$ AND MnO_{2} For other examples, CHECK with TL
1	(c)	(i)	Donates two electron pairs (to a metal ion) AND forms two coordinate bonds (to a metal ion) NOTE: Metal ion not required as Ni^{3+} is in the question	1	ALLOW lone pairs for electron pairs ALLOW dative (covalent) bonds for coordinate bonds TWO is only needed once, e.g. Donates two electron pairs to form coordinate bonds Donates electron pairs to form two coordinate bonds
1	(c)	(ii)	$\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}_{2} \checkmark$	1	ALLOW in any order IGNORE structure
1	(c)	(iii)	MARK INDEPENDENTLY $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ Each N OR each NH_{2} OR amine group has a lone pair/electron pair OR lone pairs shown on N atoms in structure \checkmark	2	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{NH}_{2}$ OR $\mathrm{H}_{2} \mathrm{NCH}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) \mathrm{NH}_{2}$ ALLOW secondary or tertiary diamines or mixture IGNORE complex ion For other examples, CHECK with TL

	ues	Answer	Marks	Guidance
1	(d)	Quality of written communication Observation must be linked to the correct reaction REACTIONS OF AQUEOUS Cu^{2+} REACTION OF Cu^{2+} with $\mathrm{NaOH}(\mathrm{aq})$ Correct balanced equation $\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow \mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s})^{\checkmark}$ state symbols not required Observation blue precipitate/solid \checkmark	2	FULL ANNOTATIONS MUST BE USED THROUGHOUT ALLOW some reactions for Cu^{2+} and some for Co^{2+} ALLOW equilibrium signs in all equations IGNORE any incorrect initial colours IGNORE state symbols IGNORE an incorrect formula for an observation $\text { ALLOW }\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}+2 \mathrm{H}_{2} \mathrm{O}$ ALLOW full or 'hybrid' equations, e.g. $\mathrm{Cu}^{2+}+2 \mathrm{NaOH} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}+2 \mathrm{Na}^{+}$ $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}+6 \mathrm{H}_{2} \mathrm{O}$ ${ }_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4}$ Als 0 W any shade of blue
1	(d)	REACTION OF Cu ${ }^{2+}$ WITH excess $\mathrm{NH}_{3}(\mathrm{aq})$ Correct balanced equation $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{NH}_{3} \longrightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}+4 \mathrm{H}_{2} \mathrm{O} \checkmark$ Observation deep/dark blue (solution) \checkmark	2	IGNORE initial precipitation of $\mathrm{Cu}(\mathrm{OH})_{2}$ IGNORE $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ ALLOW royal blue, ultramarine blue or any blue colour that is clearly darker than for $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ DO NOT ALLOW deep blue precipitate for observation
1	(d)	REACTION OF Cu ${ }^{2+}$ WITH HCl(aq) Correct balanced equation $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{Cl}^{-} \longrightarrow\left[\mathrm{CuCl}_{4}\right]^{2-}+6 \mathrm{H}_{2} \mathrm{O} \checkmark$ Observation yellow (solution) \checkmark	2	IGNORE mention of different concentrations of HCl ALLOW CuCl ${ }_{4}{ }^{2-}$ i.e. no brackets $\mathrm{OR} \mathrm{Cu}(\mathrm{Cl})_{4}{ }^{2-}$ ALLOW $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{HCl} \longrightarrow\left[\mathrm{CuCl}_{4}\right]^{2-}+6 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{H}^{+}$ IGNORE Cu ${ }^{2+}+4 \mathrm{Cl}^{-} \longrightarrow \mathrm{CuCl}_{4}{ }^{2-}$ ALLOW green-yellow OR yellow-green DO NOT ALLOW yellow precipitate for observation

Question		Answer	Marks	Guidance

(b)	(i)	Donates two electron/lone pairs to a metal ion OR Co ${ }^{3+}$ DO NOT ALLOW metal (complex contains Co^{3+}) Electron/lone pair on N OR NH 2 (groups) \checkmark	2	ALLOW 'forms two coordinate bonds/dative covalent/dative bonds' as an alternative for 'donates two electron/lone pairs' Two is required for 1st marking point Two can be implied using words such as 'both' or 'each' For metal ion, ALLOW transition (metal) ion Second mark is for the atom that donates the electron/lone pairs ALLOW both marks for a response that communicates the same using N as the focus: e.g. The two N atoms each donate an electron pair to metal ion
(b)	(ii)	$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{2} \mathrm{Cl} l_{2}\right]^{+} \checkmark$	1	Square brackets AND + charge required DO NOT ALLOW any charges included within square brackets ALLOW $\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2} \mathrm{Cl}_{2}\right]^{+}$OR $\left[\mathrm{CoC}_{4} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{Cl}_{2}\right]^{+}$ ALLOW structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) IGNORE $\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{+}$simplifies question Within formula, ALLOW $\ldots . .(\mathrm{Cl})_{2},\left(\mathrm{Cl}_{2}\right)$ ALLOW CO Within the context of the question, CO is Co
(b)	(iii)	$6 \checkmark$	1	

(c)	(i)	$\mathrm{O}_{2} /$ oxygen bonds to $\mathrm{Fe}^{2+} / \mathrm{Fe}(\mathrm{II}) \checkmark$ $\mathrm{Fe}^{2+} / \mathrm{Fe}$ (II) essential for 1 st marking point (When required,) O_{2} substituted $\mathbf{O R} \mathrm{O}_{2}$ released \checkmark Fe^{2+} not required for 2nd marking point (e.g. IGNORE Fe)	2	ASSUME that 'it' refers to oxygen ALLOW O_{2} binds to $\mathrm{Fe}^{2+} \mathrm{OR} \mathrm{O}_{2}$ donates electron pair to Fe^{2+} $\mathrm{OR} \mathrm{O}_{2}$ is a ligand with Fe^{2+} IGNORE O_{2} reacts with $\mathrm{Fe}^{2+} \mathrm{OR} \mathrm{O}_{2}$ is around Fe^{2+} ALLOW bond to O_{2} breaks when O_{2} required OR $\mathrm{H}_{2} \mathrm{O}$ replaces O_{2} OR vice versa ALLOW CO_{2} replaces O_{2} OR vice versa ALLOW O_{2} bonds/binds reversibly
(c)	(ii)	$\left(K_{\text {stab }}=\right) \frac{\left[\mathrm{HbO}_{2}(\mathrm{aq})\right]}{[\mathrm{Hb}(\mathrm{aq})]\left[\mathrm{O}_{2}(\mathrm{aq})\right]} \checkmark$ ALL Square brackets essential	1	ALLOW expression without state symbols (given in question)
(c)	(iii)	Both marks require a comparison Stability constant $/ K_{\text {stab }}$ value with CO is greater (than with complex in O_{2}) \checkmark (Coordinate) bond with CO is stronger (than O_{2}) OR CO binds more strongly	2	IGNORE (complex with) CO is more stable ALLOW bond with CO is less likely to break (than O_{2}) OR CO is a stronger ligand (than O_{2}) OR CO has greater affinity for ion/metal/haemoglobin (than O_{2}) ALLOW CO bond formation is irreversible OR CO is not able to break away IGNORE CO bonds more easily OR CO complex forms more easily
		Total	18	

Question			er	Marks	Guidance
3	(a)		$2 \mathrm{Fe}+3 \mathrm{Cl}_{2} \longrightarrow 2 \mathrm{FeCl}_{3} \checkmark$	1	ALLOW 2Fe $+3 \mathrm{Cl}_{2} \longrightarrow \mathrm{Fe}_{2} \mathrm{Cl}_{6}$ ALLOW multiples, e.g. $\mathrm{Fe}+1 \frac{1}{2} \mathrm{Cl}_{2} \longrightarrow \mathrm{FeCl}_{3}$ IGNORE state symbols DO NOT ALLOW $2 \mathrm{Fe}+3 \mathrm{Cl}_{2} \longrightarrow 2 \mathrm{Fe}^{3+}+6 \mathrm{Cl}^{-}$
	(b)		$\mathrm{Fe}^{3+}+3 \mathrm{OH}^{-} \longrightarrow \mathrm{Fe}(\mathrm{OH})_{3} \checkmark$	1	$\begin{aligned} & \text { IGNORE state symbols } \\ & \text { ALLOW }\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{OH}^{-} \longrightarrow \mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}+3 \mathrm{H}_{2} \mathrm{O} \\ & \text { ALLOW }\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{OH}^{-} \longrightarrow \mathrm{Fe}(\mathrm{OH})_{3}+6 \mathrm{H}_{2} \mathrm{O} \end{aligned}$
	(c)	(i)	$2\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+\mathrm{Zn} \longrightarrow 2\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{Zn}^{2+}$ All chemical species correct (IGNORE e ${ }^{-}$for 1st mark) \checkmark Balancing with ' 2 ' in front of both Fe complex ions	2	IGNORE state symbols For 1 mark, ALLOW balancing if (aq) species have been used instead of complex ions: $2 \mathrm{Fe}^{3+}+\mathrm{Zn} \longrightarrow 2 \mathrm{Fe}^{2+}+\mathrm{Zn}^{2+}$
		(ii)	redox \checkmark	1	ALLOW reduction AND oxidation CARE: possible confusion with (d)(ii)
	(d)	(i)	Formula of E as $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ shown as product in equation \checkmark Correct balanced equation: $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+6 \mathrm{CN}^{-} \longrightarrow\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}+6 \mathrm{H}_{2} \mathrm{O} \checkmark$ Notice different charges on complex ions: LHS 3+, RHS 3state symbols not required	2	ALLOW equations with KCN, i.e.: $\left[\begin{array}{l} {\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+6 \mathrm{KCN} \rightarrow\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}+6 \mathrm{~K}^{+}+6 \mathrm{H}_{2} \mathrm{O}} \\ {\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+6 \mathrm{~K}^{+}+6 \mathrm{CN}^{-} \rightarrow\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}+6 \mathrm{~K}^{+}+6 \mathrm{H}_{2} \mathrm{O}} \end{array}\right.$ ALLOW ECF for an equation showing formation of $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ from $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$: $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+6 \mathrm{CN}^{-} \longrightarrow\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}+6 \mathrm{H}_{2} \mathrm{O}$ Notice different charges on complex ions: LHS 2+, RHS 4-
		(ii)	ligand substitution \checkmark	1	ALLOW ligand exchange OR ligand replacement CARE: possible confusion with (c)(ii)

Ques	er	Marks	Guidance
(e)	 1 mark for each isomer $\checkmark \checkmark$ Bonds must go to O ligand atoms on EACH structure IGNORE charges on Fe^{3+} and O^{-}at this stage 3- charge outside brackets of BOTH isomers AND NO charges shown on Fe or O within brackets Note: This mark is only available from structures with three bidentate ligands bonded to Fe via two Os on each ligand \checkmark	3	ALLOW any attempt to show bidentate ligand Bottom line is the diagram below. IGNORE structure between two Os in ligand even if slightly different Must contain 2 out wedges, 2 in wedges and 2 lines in plane of paper. For bond into paper, ALLOW:
(f)	$\mathrm{FeO}_{4}{ }^{2-} \checkmark$	1	Formula AND charge needed ALLOW other 2- ions containing: Fe AND O AND Fe has ox no of +6 i.e. ALLOW $\mathrm{Fe}_{2} \mathrm{O}_{7}{ }^{2-}, \mathrm{Fe}_{3} \mathrm{O}_{10}{ }^{2-}$, etc.
	Total	12	

Question			er	Marks	Guidance
4	(a)		$\begin{aligned} & \left(1 s^{2} 2 s^{2} 2 p^{6}\right) 3 s^{2} 3 p^{6} 3 d^{8} 4 s^{2} \\ & \left(1 s^{2} 2 s^{2} 2 p^{6}\right) 3 s^{2} 3 p^{6} 3 d^{8} \end{aligned}$	2	ALLOW $4 s$ before 3d, i.e. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{8}$ IF candidate has used subscripts OR caps, DO NOT ALLOW when first seen but credit subsequently, $\text { i.e. } 1 \mathrm{~s}_{2} 2 \mathrm{~s}_{2} 2 \mathrm{p}_{6} 3 \mathrm{~s}_{2} 3 \mathrm{p}_{6} 3 \mathrm{~d}_{8} 4 \mathrm{~s}_{2}$ $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 D^{8}$ For Ni^{2+} ALLOW $4 \mathrm{~s}^{0}$ in electron configuration
	(b)	(i)	Acts as a base OR alkali AND removes/accepts a proton (from DMGH) \checkmark	1	
		(ii)	$4 \checkmark$	1	
		(iii)	(Each) DMG has 1- charge which cancel 2+ charge on $\mathrm{Ni}^{2+} \checkmark$	1	ALLOW $2 \mathrm{x}-1+2=0$ For Ni^{2+}, ALLOW Ni has an oxidation number of (+)2 ALLOW Ni^{2+} cancelled out by 2 DMG $^{-}$ ALLOW 'balanced' for cancelled
		(iv)		1	ALLOW OH for O-H ALLOW CH_{3} DO NOT ALLOW -H—O

Quest	er	Marks	Guidance
(c)	Marks are for correctly calculated values amount of Ni \qquad amount $\mathrm{Ni}(\mathrm{DMG})_{2}$ OR amount hydrated salt OR amount Ni^{2+} $=\frac{2.57}{288.7}=\mathbf{8 . 9 (0)} \times 10^{-3} \mathrm{~mol} \checkmark$ M values \qquad $M($ hydrated salt $)=\frac{2.50}{8.90 \times 10^{-3}}=\mathbf{2 8 0 . 9}\left(\mathrm{g} \mathrm{mol}^{-1}\right)^{\vee}$ $M($ anhydrous salt $)=\frac{1.38}{8.90 \times 10^{-3}}=155.0\left(\mathrm{~g} \mathrm{~mol}^{-1}\right) \checkmark$ $\mathrm{H}_{2} \mathrm{O}$ mass $\mathrm{H}_{2} \mathrm{O}$ $=2.50-1.38=\mathbf{1 . 1 2} \mathbf{g}$ $n\left(\mathrm{H}_{2} \mathrm{O}\right)$ from mass or M values $=\frac{1.12}{18.0}=6.2(2) \times 10^{-2} \text { OR } 280.9-155.0 \sim 125.9$ waters of crystallisation $=\frac{6.22 \times 10^{-2}}{8.90 \times 10^{-3}} \quad=7 \quad \text { OR } \quad \frac{125.9}{18.0} \quad=7$ Anion \qquad Molar mass of anion $=280.9-(58.7+7 \times 18)=96.1\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$ OR Molar mass of anion $=155.0-58.7=96.3\left(\mathrm{~g} \mathrm{~mol}^{-1}\right) \checkmark$ Formula \qquad Formula of salt is $\mathrm{NiSO}_{4} \cdot \mathbf{7 \mathrm { H } _ { 2 } \mathrm { O }} \checkmark$	7 max	ANNOTATE WITH TICKS AND CROSSES, etc Note: The answers incorporate three different approaches to solving this problem. IF candidate attempts calculation via another method, consult your TL ECF answer above ALLOW numerical answers 280.8-280.9 (ALLOW 281) IGNORE further figures ALLOW numerical answers 155.0-155.1 (ALLOW 155) IGNORE further figures ASSUME that 'unlabelled 1.12 g ' applies to $\mathrm{H}_{2} \mathrm{O}$ unless contradicted ALLOW numerical answers 125.7 - 125.9 (ALLOW 126) ECF answer above 7 as whole number is required Note: Mark for 7 can be credited within formula BUT there must be some relevant working to derive ~ 7, e.g. 6.99 ALLOW numerical answers 96.0-96.4 (ALLOW 96)
	Total	13	

